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Abstract

A computer-aided flow visualization process has been developed

to analyze video images acquired from rotating and translating

light sheet visualization systems. The computer process integrates
a mathematical model for image reconstruction, advanced com-

puter graphics concepts, and digital image processing to provide
a quantitative and a visual analysis capability. The image recon-

struction model, based on photogrammetry, uses knowledge of the

camera and light sheet locations and orientations to project two-

dimensional light sheet video images into three-dimensional space.

A sophisticated computer visualization package, commonly used to
analyze computational fluid dynamics (CFD) results, was chosen

to interactively display th.e reconstructed light sheet images with

the numerical surface geometry for the model or aircraft under

study. The photogrammetric reconstruction technique and the im-

age processing and computer graphics techniques and equipment
are described. Results of the computer-aided process applied to both

a wind tunnel translating light sheet experiment and an in-flight

rotating light sheet experiment are presented. The capability to

compare reconstructed experimental light sheet images with CFD
solutions in the same graphics environment is also demonstrated.

Introduction

Flow visualization techniques are important tools for the aerodynamicist. The ability to see

a flow can aid in the development of heuristic flow models. One common technique used at

Langley Research Center is light sheet illumination of particle-seeded flow. A single, stationary

light sheet allows characteristic structures of the flow to be visualized for one slice of a three-

dimensional (3-D) flow field. The recording camera is often restricted to a fixed location outside
the test section for wind tunnel applications or onboard the aircraft for in-flight experiments,

and it has an oblique orientation to the light sheet. Consequently, the recorded images suffer

from perspective distortion that must be accounted for when making geometric measurements.

Digital image processing techniques are available to extract quantitative data from light sheet

images and to correct for perspective distortions (ref. 1). These techniques rely on photographing
a physical grid of known geometry in the plane of the light sheet with the recording camera.

Although this method is relatively simple for experiments involving stationary light sheets, it is

not practical for experiments in which the light sheet moves.

Advances in the design of light sheet systems have resulted in greater flexibility of the light

sheet technique. For example, capabilities now exist to control the size and the position of light

sheets in real time, translate and rotate single sheets through a volume, and synchronize the sheet

with pertinent flow oscillations (ref. 2). These systems offer aerodynamicists the opportunity

to see multiple slices of the 3-D flow field about a model. However, the task of analyzing and

interpreting the recorded two-dimensional (2-D) images is not an easy one. The ability to make
accurate geometric measurements of 3-D structures in the flow field requires a more sophisticated

technique than photographing a physical grid in the plane of each light sheet. Trying to form

a mental image of the 3-D flow field based on viewing a sequence of 2-D slices through it is

difficult. Thus, a capability for visualizing the slices as a volume of data is needed.

The purpose of this paper is to describe a computer-aided process that was developed to
enhance the usefulness of 3-D light sheet flow visualization techniques. The main objective was to



reconstructthe 3-Dgeometricshapeof thevisibleregionilluminatedby translatingandrotating
light sheets.The computerprocesscombinesdigital imageprocessingandcomputergraphics
proceduresanda3-Dreconstructionalgorithmbasedonphotogrammetry.Thisprocesshasbeen
appliedto light sheetimagesgeneratedat LangleyResearchCenter,andit providesresearchers
with an enhancedanalysiscapabilityfor understandingflow behavior. This paperdescribes
the sequenceof proceduresthat havebeenprovento be effectiveat providingquantitative
geometricalposition information for featuresof interest in the flow field and an improved
qualitativeanalysiscapability.Thedescriptionofthephotogrammetricreconstructiontechnique,
the imageprocessingand computergraphicstechniquesand equipment,and the resultsof
the computer-aidedprocessappliedto both a wind tunnel and an in-flight flow visualization
experimentarepresented.
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X, Y, Z

x,y,z

subset of pixels used to find center of brightness

affinity distortion terms

subset of pixels of A

coefficients of general equation of light sheet plane

camera constant corresponding to lens effective focal length

vectors emanating from vertices of triangle

input 2-D digital images

output 2-D digital images

radial distortion terms

pixel gray-level value

3 by 3 rotation matrix

horizontal scan line position of pixel

horizontal scan line position of center of brightness

normal vector to triangle

column position of pixel

column position of center of brightness

components of normal vector to triangle

orthographic projection of object point

point within the plane of triangle

lens decentering distortion terms

arbitrary surface in object coordinates

parameter in parametric equations of a line in 3-D space

vertices of triangle

orthographic projection of vertices of triangle

object space coordinates

image space coordinates



Xp, yp

Ax, Ay

photogrammetric principal point

angle of attack, deg

parameter set for removing biases in imaging system

angles for camera orientation, deg

light sheet position angle measured counterclockwise from fuselage nose, deg

Subscripts"

C

I

0

S

camera lens center

image point

object point

light sheet origin

Abbreviations:

2-D

3-D

ADI

ALU

BART

CFD

CRAMPA

DVAL

FAST

FB

ITI

RTDD

RTMP

SGI

VIPS

two-dimensional

three-dimensional

analog-digital interface

arithmetic logic unit

Basic Aerodynamic Research Tunnel

computational fluid dynamics

Close Range Multistation Photogrammetric Adjustment

Data Visualization and Animation Laboratory

Flow Analysis Software Toolkit

frame buffer

Imaging Technologies Incorporated

real-time digital disk

real-time modular processor

Silicon Graphics, Incorporated

Video Image Processing System

Model for Image Reconstruction

The image reconstruction technique developed in this section is based on a simple form of

photogrammetry. This technique replaces one of the cameras of a conventional stereo photo-

grammetry system with a light sheet. The reconstruction model consists of an object/image co-

ordinate system transformation, the collinearity condition of photogrammetry, and the equation
of the light sheet plane. A simple set of equations relating ideal image and object coordinates

is developed in this section. The important operational procedures for determining camera cal-

ibration and the experimental geometry are described in the section entitled "Steps in Image
Reconstruction."

Objects and their images are located with respect to an object (X, ]I, Z) and an image

(x, y, z) coordinate system, respectively. The two systems are related by a simple coordinate
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transformation. The origin and the orientation of the object system are arbitrary. The origin of

the image system is located at (Xc, YC, ZC) in object coordinates. The orientation of the image

system with respect to the object system is given by the rotation angles co, ¢, _ via the 3 by 3

rotation matrix M -- (mi,j) defined as

icos sin 01icos 0sin lll0 01M-- -sin_ cos_ 0 0 1 0 0 cosw sinw (1)

0 0 1 -sine 0 cos¢ 0 -sinw cosw

The rotation angles are defined as positive for counterclockwise rotation when observed from the

positive end of an axis looking toward the origin. The coordinate transformation from image to

object system is therefore given by

ixli 11  131 ixlixclY -- m21 m22 m23 Y + YC

Z m31 m32 m33 z Z C

A typical reconstruction geometry is illustrated in figure 1. Note that the camera lens is located
at the origin of the image coordinate system, that the camera points along the negative z-axis,

and that the x- and y-axes exit to the right and the top of the camera lens, respectively. The

collinearity condition of photogrammetry requires that an object, its image, and the lens center

lie on a line, as shown in figure 1. The object is located at (Xo, YO, ZO) in object coordinates,

and its image is located at (xI, YI, c) in image coordinates, where c is the effective focal length of
the lens that locates the image plane. A set of parametric equations for this line can be written as

X - X C +(x I - xC)t

Y - Yc + (Yz- Yc)t

z - Zc Zc)t

where (XI, YI, ZI) are the object coordinates of the image point (xI, YZ, c), which are given by

equation (2). These equations can represent any point (X, Y, Z) on the line. Because the object
point also lies in the plane of the light sheet, its coordinates are given by the intersection of

the line and an equation representing the light sheet plane. This intersection process is called

triangulation. The origin of the light sheet is located at (Xs, YS, ZS), as shown in figure 1. In

general, the light sheet plane equation can be written in the form

blX + b2Y + b3Z + b4 - 0 (4)

By substituting equation (3) into equation (4), t is determined to be

bl Xc + b2Yc + b3Zc + b4t - (5)
bl(Xc - XI)+ b2(YC - YI)+ b3(Zc - ZI)

By substituting this value for t back into

(Xo, YO, ZO ) can be evaluated.

equation (3), the unique object coordinates

Steps in Image Reconstruction

The model described above is ideal because the camera was assumed to provide a distortion-

free image and the location of the camera and of the light sheet are assumed known. However,



cameras(especiallyshort focallengthcameras)canexhibit considerableimageplanedistortion,
andthe locationand the orientationof the cameraand the light sheetneedto be determined
experimentally.Thefollowingthreesectionsdiscussthesesteps.

Imaging System Calibration

Video imagingsystemssufferfrom a wide variety of nonidealbehavior. With the recent
proliferationof commercialcharge-coupleddevice(CCD) cameras,a significantstephasbeen
madein maintainingthe stability of the sensorelements.However,CCD camerasarenot a
panaceathat ensuresworry-freeimagequality andmeasurementcapability.Althoughmostof
the time-dependenteffectsassociatedwith reticon tube camerashavebeeneliminated,video
systemsstill fundamentallyuseanalogtechnologyandrequireextensivecalibration.

Fortunately,the photogrammetriccommunityhasdevelopedsophisticatedproceduresand
algorithmsfor calibratingcamerasoverthe past fewdecades.Applicationof thesetechniques
to videosystems(refs.3 and4) allowsreductionof systematicimageplaneerrorsto residual
levelsof approximately0.5#m. By comparison,anuncalibratedimagingsystemcaneasilyhave
imageplaneerrorson the orderof 50#m or more.

It is importantto realizethat theentirevideosystem,notjust thecamera,shouldbeincluded
in the calibrationprocedure.It is not uncommonfor a videoimagingsystemto includevideo
camera,VCR, time-basecorrector,intermediatestorageonto an optical videodisc,and video
frame digitizer. Eachdevicepresentsan opportunity for addedsystematicbias and overall
image-qualitydegradation.

Theequationsof photogrammetrythat modeltheprojectionof objectcoordinates(X, ]I, Z)

to refined image plane coordinates (x, y) of a camera are (ref. 5)

x-- X I + /kx- Xp--C

!

y--y + Ay--yp-C

mll(X C - X)+ ml2(Yc - Y)+ ml3(Zc - Z)]m31(X C - X)+ m32(Y C - Y)+ m33(Zc -

- x)+ - Y)+ - z)]km31(Xc - X)-+-m32(Y C - Y)-+-m33(Zc - Z))

(6)

The point (x',y') is the measured image plane location of an object point, (xp, yp) is the

photogrammetric principal point, and the Ax and Ay terms represent functions for modeling
the distortions of the imaging system. A commonly used set of functions for Ax and Ay is

/kx-_(klr2-t-k2r4+k3r6)+pl(r2-+-2_2)-+-2p2x_l I
/ky--_l(klr2 + k2r4-t - k3r6)+ 2plX_l+P2(r2 + 2tj2)--I-al,_ Zr-a2_

(7)

where r 2 -(x - Xp) 2 + (y - yp)2 _ _2 + 92, and ki, Pi, and ai represent radial, lens decentering,

and affinity distortion terms, respectively.

A set of n independently and accurately located calibration targets are imaged from m points

of view, called stations, with the same camera. Figure 2 shows an image of a typical calibration

target plate from one station. Each target contributes two equations per station for a total
of 2ran equations. Each station contributes six unknown exterior orientation parameters

(w, ¢,,_,Xc, YC, ZC), which yield 6m unknowns. In addition, there are 10 unknown interior
orientation parameters (Xp, yp, c, kl, k2, k3,Pl,P2, al, and a2), for a total of 6m + 10 unknowns.
If 100 calibration targets and 8 stations are used, this results in 1600 equations and 58 unknowns.

The large overdetermined system of nonlinear equations is solved iteratively for all the unknowns

....................................................... ......... :........ ........ ........ : ..... ........ : : : : : : _::_:::.: _ ::: ::: :: : !: :: :: : :::: :: : .....' :



in what is called a bundle adjustment. The software used to obtain the solution, CRAMPA

(Close Range Multistation Photogrammetric Adjustment), is a commercially available suite of
C programs (ref. 6). The CRAMPA software is a highly specialized code utilizing the most

recent results of research in close range photogrammetry. Nine of the 10 interior orientation

parameters, excluding c, are used to remove the systematic biases in subsequent image plane
measurements. The effective focal length c determines the scale of the imaging system and is

also important.

Every light sheet image must have a valid set of interior orientation parameters to achieve
the maximum potential accuracy. Because the calibration images are usually taken at a different

time (often days apart) than the light sheet images, it is important to take precautions against
altering the imaging system in the interim. Any changes in the imaging system, such as using

a different VCR or digitizer board or refocusing the camera, compromise the calibration. In
situations in which the calibration has been compromised, one must recalibrate or tolerate

greatly reduced accuracy.

Determining Camera Orientation

After the camera has been properly placed to obtain images of the light sheet, images of

another set of independently and accurately known object points, called control points, are
obtained to establish the location and the orientation of the camera. The measured control

point image locations are then corrected with the calibration parameters, and equation (6) is

solved for each control point, excluding the A terms. This time, the equations are solved only

for the exterior orientation parameters (a_, ¢, _, XC, YC, ZC). A minimum of three control points

is required, but more should be used if possible. This is a standard photogrammetric procedure

called space resection.

Every light sheet image must have a valid set of exterior orientation parameters associated

with it. This set of parameters may change frequently during data acquisition because of
movement of the camera or the control points. In these cases, a systematic procedure for

determining the parameters for each light sheet image must be devised.

Determining Light Sheet Orientation

The technique for determining the light sheet orientation parameters bi differs for the

experiments described below, and no general analytic method has yet been incorporated. The

light sheet parameters can be fixed by alignment procedures for simple geometries. In other cases,
transit measurements with respect to the control points must suffice. Until analytic techniques

are incorporated, the light sheet parameters will limit the system accuracy.

Every light sheet image must have a valid set of light sheet parameters associated with it.
This set of parameters may change frequently during data acquisition because of movement of

the light sheet or the control points. In these cases, a systematic procedure for determining the

parameters for each light sheet image must be devised.

Examples of Translating and Rotating Light Sheet Experiments

Wind Tunnel Example

A laser light sheet flow visualization experiment was performed in a wind tunnel by researchers
investigating the relationship between buffeting and the vortical flow field over a wing (ref. 7).

The investigation was conducted in the Basic Aerodynamic Research Tunnel (BART) at Langley.

The BART is a test facility dedicated to code validation (ref. 8). Off-body flow visualization was

obtained from laser light sheets illuminating smoke that was entrained in the flow. The model,



shownin figure3, consistedof twin verticaltails placedon tail supportboomsthat wereaft of
a 76° flat deltawing. The modelwastestedat anglesof attacka of 20° and30°.

An illustration of the BART experimentalgeometryfor a- 20° is shownin figure 4. A
stationaryvideocameramountedabovethe glassceilingof the test sectionandforwardof the
modelwasusedto recordthe images. The light sheet,which wasmountedon a traversing
mechanismabovethe test section,wasdirecteddownwardonto the model. Thebeginningand
endinglight sheetlocationsare representedin figure 4 asgrids. The 3-D regionoverwhich
flow-fielddatawereobtainedduringtheexperimentis boundedby the camerafieldof viewand
the beginningand endinglight sheetplanes.Thecamerasensorarray,which is representedby
grid lines in the imageplane,projectsthroughthe lenscenterto grid lines in the light sheet
planes.

To obtainthe positionandthe orientationof the recordingcameravia the spaceresection
procedure,a minimum of three control points is required. Thesepoints wereconveniently
obtainedfor this experimentby usingthe three sharpcornersat the noseand wing tips of
the model. The locationsof thesecornerswereobtainedfrom modelconstructionschematics,
andthey wereassumedto be accurate.Figure5(a) showsthe locationsof the cornersin the
videoimage,and figure5(b) showsa typical light sheetimage. The objectcoordinatesystem
wasdefinedwith the originat the modelnoseandthewingtips in the X-Y plane, as shown in

figure 6. The X coordinates of the wing tips were defined to be 100-percent model chord with

the Y coordinates scaled appropriately.

Data for the light sheet plane location are required for the reconstruction process. The task

of accurate light sheet placement was simplified for this experiment by the flat triangular model

shape. The sheet was manually aligned so that both the wing tips were in the light sheet and

a flat mirror placed on the model surface would reflect the light sheet back to its source. This

alignment procedure ensured that the light sheet was parallel to the Y-Z plane. The traversing
mechanism was used during the tests to position the light sheet along the X-axis from 20-

to 160-percent model chord, in 10-percent increments. These positions are illustrated in figure 6.

The equations for the light sheet planes are then given by X = 0.2, X - 0.3,..., X - 1.6. These

equations correspond to equation (4) with bl --1.0, b2 = 0, b3 = 0, and b4 = 0.2, 0.3,..., 1.6.

A typical light sheet image for this experiment is shown in figure 5(b). Although the geometric
reconstruction of the light sheet plane has been discussed in detail, the flow features revealed by

scattered light and recorded as gray-level variations in the image have not yet been addressed.

The process of assigning a gray-level value to each object point location based on the scattered

light intensity of the corresponding image point will be described in the section entitled

"Computer Visualization Process."

In-Flight Example

An in-flight flow visualization experiment was performed by researchers investigating the

origination of the vortex system and multiple vortices over the wing of the F-106B aircraft

(ref. 9). Off-surface flow visualization was obtained by illuminating propylene-glycol vapor
entrained in the flow with a rotating light sheet. A photograph of the F-106B aircraft indicating

the vapor-screen components is shown in figure 7. (This figure shows a removable leading-edge

flap attached to the wing that was not used for the flight data presented in this paper.) The

propylene-glycol vapor was introduced into the flow through a probe located underneath the left
wing near the leading edge. Two video cameras, one mounted on top of the fuselage in front of

the light sheet housing and the other mounted on the left inlet, were used to record the images.
An illustration of the F-106B aircraft experimental geometry for the top camera is shown in

figure 8. This illustration is similar to the one shown for the BART experiment except that

the camera sensor array is omitted for clarity. The light sheet was emitted through a narrow



rotatingslit locatedon top of the fuselage.Theinlet camerahad a viewof the apexregionand
the upperwingsurface,andthe top camerahad a viewmoreaft alongthe winguppersurface.
The rotating light sheetswepta rangeof anglesfrom 40° to 125° aft of the aircraftcenterline,
and it remainedperpendicularto the wing uppersurface.Thelight sheetangleduringsweeps
wasrecorded.The 3-D regionoverwhichflow-fielddatawereobtainedis the intersectionof the
camerafield of viewandthe areailluminatedby therotating light sheet.Theobjectcoordinate
systemshownwasadoptedto becompatiblewith othermeasurementsperformedontheaircraft.
The techniquesusedto locatethe controlpointsandlight sheetaredescribedbelow.

Becauseno convenientlyidentifiablewingfeatureswereavailable,suchasthe sharpcorners
on the BART delta wing, the controlpoints had to be manufactured.A videoimageof the
controlpointsis shownin figure9(a), and a vaporscreenimageis shownin figure9(b). The
controlpointswerecircularpiecesof cardboardcenteredascloseaspossibleon theintersections
of wingsparsandribs. TheX and Y coordinates of the spars and ribs were documented in the

original F-106B aircraft construction schematics. The Z values were measured by a scale from
a level line.

The light sheet was designed to rotate about a line parallel to the Z-axis. The measured

location of the light sheet origin was X S - 438.7 in., YS - 0.4 in., and Z S - 51.5 in., as shown

in figure 10. The aircraft instrumentation system provided the rotation angle (I) measured from
the nose of the aircraft. The equation of the light sheet, as a function of (I), is given by

tan -- (Y - YS) (8)
(X-Xs)

and equivalently in the form of equation (4) as

(tan (I))X +(-1)Y +(0)Z +(Ys - XS tan (I))- 0 (9)

The videotape recording of the in-flight experiment contains the primary data (i.e., the vapor-

scattered light from the rotating light sheets). (See fig. 9.) A typical image, representing one

slice through the 3-D flow-field, is shown in figure 9(b). One factor that makes this image

difficult to analyze is that the outline of the wing upper surface is barely visible. The light sheet

footprint (i.e., the intersection of the light sheet with the wing upper surface) produced the most
reflection; therefore, it appears as the brightest region in the images. The footprint provides an

indication of the light sheet position when examining the 2-D images.

Computer Visualization Process

The computer visualization process is a combination of digital image processing techniques

for digitizing, enhancing, and analyzing sequences of experimental images recorded on videotape
and interactive computer graphics for displaying and analyzing the reconstructed image data.

All visual data analysis was performed in the Data Visualization and Animation Laboratory

(DVAL) at Langley Research Center. This laboratory provides advanced visualization tools on
an integrated system of high-performance graphics workstations and digital image processing

equipment. Current DVAL resources include Sun Microsystems, Incorporated, and Silicon

Graphics, Incorporated (SGI) workstations for performing interactive computer graphics, high-

quality image rendering, advanced animations, and image analysis, and a Video Image Processing
System (VIPS) for performing video-rate image acquisition, processing, and storage. The VIPS
is a combination of hardware and software designed to provide a specialized capability for

applying enhancements at video rates to sequences of wind tunnel or in-flight images recorded

on videotape.



The overall computervisualizationprocessis illustrated in figure 11. Videotapeframes
weredigitizedandprocessedon the VIPS. The digital imageswerethen analyzedon the Sun
computerto extractvortexcorelocations.Theimagesandthecorelocationsweresubsequently
transferredto anSGIworkstationwherethe triangulationsoftwarewasexecutedto mapimage
pixels into 3-D space. The cameraand light sheetparametersare necessaryinputs to the
triangulationsoftware.The Flow AnalysisSoftwareToolkit (FAST) (ref. 10)on the SGIwas
usedto interactivelydisplaythe 3-D imagedata and the numericalsurfacegeometryof the
model.

Digitizing and Processing Videotape

In the two examples described above, the visual record of the light sheet flow visualization
experiment is a standard S-VHS videotape. In addition, a set of calibration images (see the

section entitled "Imaging System Calibration") is also recorded on videotape. Prior to image

reconstruction, these analog video signals must be converted to digital images. The VIPS,

composed of a series 150 modular image processing subsystem from Imaging Technologies

Incorporated (ITI) and a real-time digital disk (RTDD) subsystem from Storage Concepts,

Incorporated, that was interfaced to a Sun computer, was used to digitize, process, and store
select frames from the raw video footage of the flow visualization experiments. The block

diagram in figure 12 illustrates the image processing pipeline configuration of the modules

within the series 150 subsystem and the interface to the RTDD subsystem. The analog-digital

interface (ADI) converts the analog video signal into a 2-D array of numbers that can be passed

sequentially through the pipeline to the other modules in the subsystem. For each frame of video,
the ADI divides 480 of the active horizontal video lines into 512 samples, which are known as

pixels. Each pixel location is assigned an integer gray-level value between 0 and 255; this value

corresponds to the brightness of the image at that location. The resulting 512 x 480 x 8 bit

digital images are passed through the pipeline to other modules in the pipeline where additional

processing may be performed. The real-time modular processor (RTMP) is the first module in
the pipeline, followed by the arithmetic logic unit (ALU), and finally the frame buffer (FB).

Pixels are processed through the pipeline at video rates (30 frames per sec). The RTDD is

capable of storing approximately 8 min of full-frame digital image data. The software interface

is the VISILOG image processing software from Noesis Vision, Incorporated.

During the BART experiment, the light sheet was positioned at 15 different stations along

the model; these locations range from a 20-percent model chord to a 160-percent model chord.

(See fig. 6.) Approximately 20 sec of video was recorded for each light sheet station. The ITI

subsystem pipeline processed the digital images coming from the ADI with a pointwise recursive

digital filter of the form

gi - afi +(1- a)gi-1 (10)

where fi and gi are the input and output images, respectively, and 0 < a < 1. This temporal

digital filter is commonly used in signal processing (ref. 11) to smooth digital data. A weight of
a - 0.25 was selected with the goal of removing noise in the images without significantly altering

temporal information. The first input image was f0, and an image of all zeros was used as the

initial value for g-l- The resulting time-filtered digital images were stored on the RTDD. The

processed images were then played back for inspection from the RTDD at speeds less than video
rates. The researcher selected one representative image for each light sheet station based on

subjective image quality. The images shown in figure 5 are two examples of images digitized and

processed on the ITI subsystem.

For the in-flight experiment with the F-106B aircraft, the researcher viewed the videotape in
advance and selected specific frames to be digitized. Frames of interest were identified by the
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visual time code appearing on each video frame. No processing was performed on these images

prior to image reconstruction.

Extracting Vortex Core Locations in 2-D Digital Images

Once the light sheet images have been digitized, interactive image analysis techniques can be

applied to extract quantitative information, such as vortex core locations. The BART light sheet

image at station X -- 1.1 will be used as an example. An enlarged gray-scale image of the port

side vortex is shown in figure 13(a). The vortex core appears as a dark interior region that is void

of seeding particles. The location of the vortex core centroid is determined by finding the center

of mass of the contrast reversed pixels within these dark regions. A better terminology might

be center of brightness because a brightness value is more commonly associated with pixels.

The center of brightness computation is restricted to a subset of pixels that makes up the

dark interior region of the vortex. This subset is determined by using a sequence of simple steps.

First, the researcher specifies an initial estimate of the vortex core location by selecting a single

pixel somewhere inside the dark interior region of the vortex. If the image is thought of as a

brightness surface, in which the height of each pixel is determined by its gray-level value or

brightness, then the initial guess pixel serves as the input for a technique that finds the valley

(the dark area) of the region surrounding this pixel. This process is analogous to letting a ball

roll down a hill (the bright area). The output pixel location replaces the researcher's initial

guess and serves as the input for a technique that searches for the ridge of the hill. The result is

a closed boundary (shown in fig. 13(b)) which defines the subset A of pixels to be considered for

use in the center of brightness computation. Pseudocolor, an assignment of colors to gray-level

values, is used in the figure to contrast variations within the vortex core. Once A has been

determined, B (a subset of A) is defined by applying a gray-level threshold to the pixels in A.

Subset B, which is shown in figure 13(c) as an entirely black region, represents the pixels in

subset A with a gray-level value below the chosen threshold. Let N be the number of pixels in B

and/1,/2,... ,1N be the gray-level values corresponding to the horizontal scan line and column

positions (rnl, nl), (m2, n2),..., (raN, ni) of the pixels in B. Then, the center of brightness of

the contrast reversed pixels in B is determined by

?Ttcb

ncb --

(2551 mi - )

_-_iN 1 (255 - li)

}-2_iN 1 ni (255 - li)
N

Ei=l (255 -- li)

(11)

The mcb and ncb coordinates were chosen as the vortex core location. The crosshair in figure 13(c)

indicates the computed pixel location of the vortex core.

Interactive Display of Reconstructed Images and Numerical Surface Geometry

The photogrammetric reconstruction of a single 512 × 480 digital image requires 3.75 Mb

of storage space. The total storage requirement depends on the number of light sheet planes

to be analyzed and the additional storage required for the numerical surface geometry of the

model. Typically, anywhere between 10 and 15 images per test condition were studied for the two

experiments discussed above. A sophisticated visualization package is required to interactively

display experimental data sets of this magnitude. The package currently used for this work is

the Flow Analysis Software Toolkit (FAST) running on the SGI workstation.

The FAST was originally developed as a postprocessing graphics environment for viewing

and analyzing computational fluid dynamics (CFD) results. A grid file and matching function
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file are read into FAST. The grid file contains the 3-D coordinates of a finite number of points in

the flow field, and the function file contains a set of scalar values associated with each grid point.

Experimental data can be expressed in a similar manner. The triangulation software produces

the grid file by computing 3-D object coordinates for each pixel in a set of 2-D video images.
The digitization process produces the function file containing pixel gray-level values. These two

files can be generated and input into FAST to interactively visualize any desired test condition.

Many features of the highly interactive FAST environment are useful for analyzing the
experimental data sets. Figure 14 shows several user interface windows that appear on the SGI

display during a FAST session. The delta wing numerical surface geometry, the reconstructed

light sheet images, and the vortex core paths are displayed in the Active View Window. To

create this display, grid files for the delta wing, twin tails, light sheet stations, and vortex core
locations are selected for data input. Also, the light sheet intensities corresponding to the light

sheet grid are selected. Pseudocolor is used to display the light sheet intensities. A range of

low intensities (from 0 to 20) are clipped (i.e., not displayed) by using a thresholding option in
FAST, thus allowing only the vortex structure to be seen. Also, object points with Z values less

than 0 are not displayed, which eliminates unimportant data below the wing. The entire scene
can be rotated, translated, and zoomed in and out with the interactive viewing controls. A data

probe and a probe readout can be used to examine the 3-D coordinates of any grid point in any
of the scene objects. In figure 14, the probe is being used to look at the X, Y, and Z values for

the port side vortex core at light sheet station X -0.7.

The entire scene shown in the Active View Window in figure 14 is created in a progression,

as shown in figures 15(a) to (f). First, the numerical surface geometry of the delta wing and

the vertical twin tails is input and displayed with grid lines (fig. 15(a)). The model can also be
rendered as a smooth shaded surface to provide a more realistic view (fig. 15(b)). Figure 15(c)

shows the smooth shaded surface with the light sheet grid for station X- 1.1. The function

values at each grid point, in this case image intensities, are interpolated to produce a smoothly

varying function on the light sheet plane, as shown in figure 15(d). Function values below

a specified value are clipped, and every other light sheet station is displayed in figure 15(e).

Figure 15(f) shows a continuous vortex core path by connecting the vortex core points extracted
for each light sheet station with straight lines. A similar progression for the port wing of the

F-10aB aircraft is shown in figures 16(a) to (f). The entire F-106B aircraft can be displayed in

FAST with selected light sheet images, as shown in figure 17.

The objects in a scene can be rotated and viewed from any angle. Figure 18 shows a top

and a side view of the delta wing with just the reconstructed vortex core points connected by

straight lines. The top view gives insight into the distance the core path is from the leading

edge, whereas the side view provides insight into the height of the vortex core above the delta

wing surface.

An advantage of using FAST to analyze the experimental data sets is the capability to perform

visual comparisons with CFD data sets. Figure 19 shows the delta wing with experimental
data on the port side and the computational stagnation pressure contours on the starboard

side (ref. 12). There is no physical correspondence between the colors used to represent the

light intensity in the experimental images and the colors used to represent the computational
stagnation pressure contours. Nevertheless, the side-by-side comparison is useful for a visual

comparison of vortex system features, which are indicated by the computed yellow particle

traces on the computational side and a white line on the experimental side.

Extension for On-Surface Mapping

A powerful extension to this technique was developed to reconstruct images of flow phenomena
confined to the surface of an airfoil, such as the oil-flow image in figure 20(a). This image was
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acquiredduring a daylight flight of the F-106Baircraft after applyingan oil mixture to the
leading-edgeregionof the left wing. Theoil patternson the wingsurfacewereacquiredby the
samecamerausedto recordvapor-screenimagesfromthe top of the fuselage.
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The same coordinate system transformation and collinearity condition expressed in equa-

tions (1) to (3) are assumed here, and only equations (4) and (5), which are specific for a

planar surface, must be modified or replaced. In theory, the surface S of interest can be defined

implicitly in object coordinates by

S(X, Y, Z)- 0 (12)

If (XI, YI, ZI) is the image point of an object confined to this surface, then the coordinates of

the object can be determined by intersecting the line containing the lens center and the image

point (eq. (3)) with the equation of the surface to obtain

S(Xc - Xc)t, zc - Yc)t, zc - zc)t)- o (13)

which must be solved for t. (This is a problem similar to ray tracing in computer graphics

applications.) If S is a quadric surface, for example, finding the roots of equation (13) is

equivalent to solving a quadratic equation.

In general, the solutions to equation (13) may be real or complex. If only complex values
for t result, then the object point corresponding to the image point (XI, YI, ZI) does not lie

on S. Furthermore, negative values for t indicate points on S that lie behind the image plane of

the camera; therefore, these points cannot be object points. Thus, only positive, real solutions

to equation (13) represent valid object points within the field of view of the camera. If more
than one such solution is found, then several points on S lie along the line of sight, but the point
closest to the camera is assumed to obscure the others. Therefore, although equation (13) may

have several solutions for t, the smallest positive real value for t is selected to represent the object

point. The final coordinates (X o, YO, ZO) can then be directly determined with equation (3).

In practice, equation (12) is difficult to derive, and equation (13) is even more difficult to solve
except for surfaces described by low-order polynomials (such as spherical or parabolic surfaces).

Therefore, an airfoil surface is often approximated by a mesh of quadrilaterals or triangles; this

mesh is commonly referred to in CFD applications as a structured or an unstructured grid,

respectively. The numerical surface geometry shown in figure 20(b), for example, is composed

of quadrilaterals, and it was used to approximate the wing surface of the F-106B aircraft. Each

quadrilateral can be further subdivided into two triangles. Thus, the problem of mapping an
image onto an arbitrary surface can be approximated by mapping that image onto a mesh of

triangles.

To determine if a given triangle in the mesh contains the object corresponding to a given

image point (XI, YI, ZI), the equation of the plane containing the triangle must first be derived.

Recall that a normal vector N to any triangle in object coordinates with vertices V0, V1, and V2,
where

Inll Ix°l IXll Ix21N--n2 V0- Y0 Vl- Y1 V2- ]12 (14)

n3 ZO Zl Z2
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canbederivedby usingthe crossproductof the vectorsV1 - V0 andV2 - V0"

X - X0 1
N -- (V 1 -- V0) X (V 2 -- V 0) -- Y1 - Y0

Zl - Zo
X2 - Xo 1
Y2 - Yo

z2- zo

n 2 -- (X 2 - Xo)(Z 1 - Z0)-(X 1 - X0)(Z 2 - Zo)]

n 3 (Xl - No) (Y2 - ]70)-(22 - 20)(}I1 - ]70)]

(15)

IxlFurthermore, if P- Y is any point within the plane containing the triangle, then N
Z

and P - V0 are orthogonal, and their dot product must be zero such that

InlllN.(P-V0)-- n2 •

n3
X-X° 1
Y - Yo

Z- Zo

-- nl(X - No)+ n2(V - ]I0)-}- n3(Z- ZO)- 0 (16)

Therefore, the equation of the plane containing this triangle is

niX + n2Y + n3 Z -(nlXo + n2Yo + n3Zo) - 0 (17)

Or, in terms of equation (4), bl - nl, b2 - n2, b3 - n3, and b4 --(nlXo + n2Yo + n3Zo)

Ix°lThe point O -- YO , at which the line of sight intersects the plane containing the triangle,

ZO
is illustrated in figure 21(a). The object coordinates of point O can be derived by using

equations (3) and (5). To determine if this point is actually within the triangle, however, an
orthographic projection of both O and the vertices V0, V1, and V2 is performed to produce O _,

V_, V_, and V_. If these points are projected into the X-Y plane, for example, then the
Z coordinate is dropped and

O' -- [ XO
(18)

Finally, if DO, D1, and D2 are defined as shown in figure 21(b) as

DO -(O'- V;)x (V_ - V_)

D1 -(O'- V_)x (V_-Vi)

D2 -(O'- V_)x (V; - V_)

(19)

then Do, D1, and D2 have the same sign if and only if O is within the triangle.

This technique to map images onto a triangular mesh was successfully applied to reconstruct

the oil-flow images that were acquired from the F-106B aircraft. The numerical surface geometry

of figure 20(b) was used as the basis for the triangular mesh, and the camera parameters
of interior and exterior orientation from the light sheet reconstruction were used as well.

Figure 22(a) shows a reconstructed oil-flow result that was interactively rendered with the
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FAST package. This information was easily combined in FAST with data acquired by using

the light sheet to produce figure 22(b). The capability to combine off-surface and on-surface

flow visualization data into the same 3-D interactive visualization environment provides the

aerodynamicist with an even more powerful quantitative and qualitative analysis tool.

With complete knowledge of the interior and exterior camera orientation parameters and a

geometric description of the airfoil surface, this technique could be applied equally well to images

of on-surface flow acquired from a variety of airfoils with substances such as colored water, liquid

crystals, and pressure-sensitive paints.

Conclusions

Research has demonstrated that the computer-aided image reconstruction technique can be

effectively applied to research projects with moving light sheets to visualize three-dimensional

(3-D) flow fields. The technique provides researchers with a 3-D quantitative and qualitative

analysis capability for two-dimensional (2-D) light sheet images recorded on videotape; previ-

ously these light sheet images were difficult to evaluate. An extension of this technique enables

on-surface flow visualization images, such as oil flows, to also be mapped onto the surface of

models. Once the maps are represented in 3-D, they can be observed from any viewpoint, thus

freeing the researcher from the original camera view. This technique shows promise in aiding the

visual comparison of experimental images and computational fluid dynamics (CFD) solutions

because experimental data can now be visualized with the same computer graphics environment,

Flow Analysis Software Toolkit (FAST), which is commonly used for analyzing and interpreting

CFD solutions. Graphics environments such as FAST allow the object space coordinates loca-

tions and function values of image and grid points to be examined interactively. In addition to a

3-D visualization tool, the technique provides mathematically precise quantitative information

about locations and structures of vortex systems, thus allowing information (such as the distance

from vortex core locations to the wing leading edge) to be easily derived and extracted.

NASA Langley Research Center
Hampton, VA 23681-0001
February 28, 1994
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Figure 1. Typical image and object space geometry.

Figure 2. Image of typical calibration target plate from one station.
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Figure 3. The 76 ° flat delta wing with twin vertical tails mounted in BART test section.
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Figure 4. BART experimental geometry for a- 20 °.
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(a) Delta wing model in test section with lights on. (b) Light sheet image for station S- 1.1.

Figure 5. Visual image data recorded during BART experiment.

X

i ,, X= 1.6

X= 1.4

= 1.2

X= 1.0

X = 0.8

= 0.6

X = 0.4

X = 0.2

Y

Figure 6. Schematic of 76 ° delta wing model coordinate system.
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Figure 8. The F-106B aircraft experimental geometry for top camera.
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(a) The port wingof F-106Baircraft takenon
ground.

(b) Light sheetimagefor •- 91°.

Figure9. Visual imagedata for F-106Baircraft in-flight experiment.
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Figure 10. Schematic of F-106B aircraft coordinate system and light sheet stations.
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Figure 11. Diagram of computer visualization process.
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Figure 12. Configuration of image processing pipeline.
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Figure 13. Steps for determining subset of pixels used in computing centroid; (a) enlarged gray-scale image of port side vortex core region; (b) subset A;
(c) subset B (crosshair marks computed location of vortex core).
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Figure 15. FAST Active View Windows for BART experimental data sets; (a) model grid lines; (b) smooth

shaded model; (c) light sheet grid for station X 1.1; (d) interpolated function values; (e) clipped

function values for every other light sheet station; (f) vortex core paths.
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Figure16. FASTActive View Windows for F-106B aircraft experimental data sets; (a) port wing grid lines;

(b) smooth shaded wing; (c) light sheet grid for • - 91°; (d) interpolated function values; (e) clipped

function values for multiple light sheet locations; (f) vortex core paths.
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Figure 17. View of F-106B aircraft with vapor-screen images superimposed.
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(a) Top view.

.... ....._nill_,:,

(b) Side view.

Figure 18. BART delta wing with reconstructed vortex core paths.
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Figure19.ReconstructedexperimentallightsheetimagesfromFASTwithcomputationalstagnationpressurecontourson76°deltawingmodel.



(a) Oil-flowimageacquiredfromtop camera.

(b) Numericalsurfacegeometrythat approximatesport wing.

Figure20. Actual andsimulatedviewsof F-106Baircraft port wing.
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(a) Orthographic projection of object point and triangle vertices.

D 0= (O'- V0") x (Vl"- V0" )

Y

D1 = (O'- V l" ) x (V2"- Vl")

V 1"

D2 = (O'- V2") x (V0"- V2")

(b) Calculation of cross products for each triangle vertex.

Figure 21. Steps in determining proximity of object point with respect to triangle.
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(a) Oil-flow mapped onto port wing.

(b) Superposition of reconstructed oil-flow image and vapor-screen image.

Figure 22. View from FAST of reconstructed images for F-106B aircraft.
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